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ABSTRACT

It is shown that solutions of the Neumann problem

u, = aiv([Yu|P2vu) in @ x (0,T)

%% =0 on dRN x (0,T)
u{x,0) = uglx) in Q

tend to some constant solutions in finite time, where 1 < p < 2 and § is a

bounded domain in ﬂp-

In order to prove this, we establish Sobolev-Poincaré&'s inequality for

functions in w'P(2) under some assumptions.
We treat the extinction phenomena for the equation

u = div(IVulp-ZVu) + Au (A > 0) with Neumann boundary conditions.
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ﬁg& SIGNIFICANCE AND EXPLANATION

/2/"‘- —2 Mﬂ&

T&e equation _nt-S-div—++Vu+E"VuZ) is, a model for a broad class of
singular and degenerate parabolic equations. The degenerate type (p > 2)
has been treated by many authors, but the behavior of solutions of the
singular type (1 < p < 2) is less well understood.

In this paper we establish the homogenization effect of the singular
problem with Neumann boundary conditions, i.e. there exists a finite number

\

T > 0 such that a solution u(x,t) tends to some constant at t * T* and

u(x,t) = const. for t » T*%.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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SOBOLEV~POINCARE'S INEQUALITY AND THE
NEUMANN PROBLEM FOR u, = div(|Vu|P"?vu)

Isamu Fukuda*
1. INTRODUCTION

In this paper, we will discuss the Neumann boundary value problem for the equation

up = aiv (|%u|P"2vu) (= & u) in @ x (0,T)
2y on 3R x (0,T) (NP)
v '
u(x,0) = ugpix) in @
where 1 < p < 2, § is a bounded domain in RY with smooth boundary 9@ and %% is an
outer normal derivative of u.
Congider the problem (NP) in & = (0,1). It takes the form
ug = (lu [P %), in (0,1) x (0,T)
u(0,t) = u,(1,t) =0 t e (o0,T) (NP) 4
u(x,0) = ug(x) x € (0,1)
Differentiating formally this equation with respect to x, we obtain that v(= ux)
satisfies
ve = ([v|P"2v) in (0,1) x (0,T)
v(0o,t) = v(1,t) = 0 t e (0,T) (DP) 4

vix,0) = vy(x) (2 ug,lx)) x € (u,T) .

From Sabinina [15] and Berryman-Holland (6], we know that v(x,t) tends to zero in
finite time, that is, ux(x,t) tends to zero in finite time. Hence there exists a
positive number T* such that u(x,t) = u (= £ ug(x)ax) for t 2 T*.

In other words, we obtain the interesting phenomenon that the solution becomes

homogeneous in finite time.

*Department of Mathematics, Kokushikan University, Setagaya Tokyo 154, Japan

Sponsored by the United States Army under Contract No. DAAG29~80-C-~0041.
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The question comes out how much of this is shared by the Neumann problem for (NP} in
general domain in RY. (Alikakos [1])

We will here jive an answer for this problem.

In the proof, Sobolev-Poincaré's inequality for functions belonging to W"P(ﬂ) (not

w;'p(ﬂ)) plays an essential role. Hence we will establish this inequality under some
assumptions before proving the homogenization effect of the Neumann problem (NP).

The singular and degenerate equation (NP) with any p > 1 has been actively studied
and is a model for a broad class of sing: ar and degenerate parabolic equaitons.
Existence, uniqueness and regularity results for both case 1< p <2 and p > 2 can be
found in Lions {[12], di Benedetto [7] and Otani [14].

Especially the case p > 2 has been treated by Alikakos-Rostamian (2], [3], (4] and
Alikakos~Evans [5]. In their papers, decay estimates for the gradient of the solutions in

tP(Q) and L (R) have been obtained. (L -estimate under the assumption that 2 is
convex.) Moreover, the regularizing effect has been proved using the monotonicity of Vu
in L7(R).

Throughout this paper, we denote IP-norm l.le(ﬂ) by I°lp and abbreviate £ in
the integral f * dx.

This worknwas done when the author was visiting the Mathematics Research Center at the
University of Wisconsin-Madison. I wish to thank Prof. M. G. Crandall for his useful

suggestion and Prof. M. Tsutsumi for his helpful comment.

2. SOBOLEV—POINCARE'S INEQUALITY

It is well-known that Sobolev-Poincaré's inequality holds for functions belonging to
W;’p(ﬂ), but we can not apply this inequality to the Neumann problem. Then we need to
establish the inequality for functions belonging to W"p(ﬂ) under some assumptions.
Proposition 2.1

Let ¢(s) be a continuous function from R to R, and ¢ has only one zero at

s = 0, ¢that is, ¢(s) = 0 implies s = 0.

-2-




If [ ¢{vix))dx = 0 and v belongs to w'"P(q) (p > 1) then

ivi chVvi
vig & P

for - é < % and ¢ is a constant independent of v and depends on p,q and Q.

Proof. Assume that the statement is false. Then there exists a sequence (vn} such that

ol

Ivnlq > nIanI (2. 1)

"’

Without loss of generality, we can assume lvnlq 1.
Since (vn} is bounded in u’:P(a) and 1. é < %, we can choose a subsequence
{v,/} such that v,. tends to v strongly in t4q) ana v io.

From (2.1), we have

1IVv. 1 <
nps=

5l
.

Then an goes to zero a8 n + ® and Vv = 0. Hence v is constant and not zero.

On the other hand, since f $(vix))dx = |9|¢(V) = 0, we can reduce that v(x) = 0.
This is a contradiction. Q.E.D.

This proposition is a generalization of Sobolev-Poincaré's inequality under the
condition [ v(x)ax = 0. (P152, Gilbarg-Trudinger (10])
Corollary.

Let 1 <p<2 and k2 1. k=1

1f [ wix)dx = 0 and (| P 4) belongs to LP(R), then

k-1
+k-1 P
Klvl£+1 S V(|w| P v)lp (2.2)

1
for k 2 nax(1, ;’(2“ -p - Np)] and K is a constant independent of w and depends on

p.x and Q. o k=1 k=1
ptk~1 P
Proof. In the proposition, taking ¢(s) = |S| 8, vm= IVI W, p=p and

1= p(f'%‘%lT' we can easily obtain the corollary.
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3. NEUMANN PROBLEM FOR u, = Apu

Integrating the equation (NP) over @ x (0,t), we have
f u{x,t)dx = f ug{x)dx . (3.1)
Let Go = T%T J ug(x)dx and wix,t) = u(x,t) - 50 which satisfies

f w{x,t)dx = 0

and
Wy = pr in @ x (0,T) ,
kLA =0 on 9 x (0,T) , (NP)
v 2
w(x,0) = ugi(x) - EO 2 wg in R.

Initially we discuss the existence and uniqueness results of the problem (NP)j,.
Theorem 3.1
k+1 :
let wy, be in L (M. (k 2 1) Then there exists an unique solution of (NP),
satisfying
() wecclo,1 : X*'@) n Peo,r : whP@)),
(2) t"% e L2(a x (o,m).
Since the equation is singular, we regularize the problem, obtain various estimates
rigorously and then get the results by passing to the limit.
We associate with problem (NP); the following nonsingular problem
p=2
v =awv((wf(2 +e) 2} in 2 x (0,m)

ow
3o " 0 on 31 x (0,T) (NP)e
wE(x,0) = wi(x) in @

€ k+1
with € > 0 and wg e c”() such that Wy * wg strongly in L () as € * 0. By the

general theory of quasilinear parabolic equation (Chapter 5, {11]), the solutions of (NP)t

are C.(ﬁ x [0,T]).

We have the following lemma.

-4~
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Lemma 3.1

Let w© be a solution of (NP)E- We have

Wi, 0 kD) (3.2)
lee(t)lp <c (3.3)
T € 2
({ thi (£)iyde < € (3.4)

where C are various positive constants independent of ¢ € (0,1] and depend on
T, 2, wg, k and p.

k=1 €
l w (x,t), integrating over f and

€
Proof. Multiplying the equation (NP) by Jw (x,t)
using integration by parts, we have
b2
/ wZIwelk-lwcdx + (leel2 + €) 2 Vwe-V(lwclk-1we)dx =0

from which we deduce

=2
1 4 k+1 k~1 2 2
T S I e [ TR v ey 2 ) Pax = 0 (3.5)

Here and from now on, we abbreviate variables x and t of w(x,t) in the integrand.

Since the second term of (3.5) is nonnegative, we have

€ €
Wy SOy € Moy
which implies (3.2).
We take k = 1 in (3.5) to obtain
P2

181 |wE)%ax + [ ()wE|? + ) 2 |wc|%ax = 0

2 dt
from which we have

b R=2 R

1 [ W fPax v f (WP s e me [ (WP e Zaxge

Integration (3.6) from 0 to T yields

-5-
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1 € 2 €12 2 1 2
3 WML +£ [ (|9 © + e)%axer < |afT + 5 Wi

for € € (0,1].
This implies

T T £
[ ] Iw|Paxat < [ [ (|WF]? + e)%axae ¢ ¢ . (3.7)
0 0

. . €
Multiplying the equation (NP)e by tw (x,t) and integrating over {, we have
p=2

cflfﬁu+tquﬂ2+m2vquu-o

which implies

R
€12 td €12 2
+ = v + = .
e ] gl » 25 [ (WE]E v erfax = 0 (3.8)
Integration (3.8) from 0 to T and integration by parts yield
T e .. 5
JoewEedae + I (wefix,m|? + o) %ax
0 t 2 P
1 5
€
== [ (| (x,t)lz + €) dxdt = 0 . (3.9)
P
From (3.7) and (3.9), we have
T
[ emSierndar ¢ £
t 2 =p
0
Q.E.D.

€ 4 € §
Now let W and W Dbe solutions of (NP)C with initial conditions Yo and Yor
respectively. p-2

By the monotonicity of the operator Au = -div((IVU|2 +e) 2 Vu), we obtain

€ § € $
Tw (t) w (t)lk+1 g Iwo HOIk+1
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which implies that {w'} is a Cauchy sequence in C([0,T7) : L¥*!

Lk+1

(8)). 1Then w®  tends

to w strongly in C((0,T] : R)).
Moreover, by the well-known arqgument of the theory of monotone operator (P160, Lions

[12)) and (3.4), we obtain

=2

aiv((|WEl2 + €) 2 w®) » aiv(|Ww|P %)

weakly in Lz(ﬂ x (1,T)) for any T > 0.
We conclude that w is a desired solution of (NP)z.

Remark. Since w(t) belongs to W"p(ﬂ) for a.e. t € (0,T), then %% = 0 in the sense

- — * - — ’ —
-~ 9 L) 3l v P T P
that IVHIP 2 3% e 1f (O,T tw P (ﬂ)) where W P () 1is Qual of wP () and
% + 57 = 1. (P165, Lions [12] and Lions-Magenes [13])

We now arrive at the main theorem.

Theorem 3.2.
Let u(x,t) be a solution of (NP) with initial conditions ug € Lk*’(ﬂ),

1 - 1
k > max(1, o (28 - p - Np)), and uy, = T / g (x)dx.
Then there exists a number T* > 0 such that

- k+1
u(t) *uy in LD () as ¢t * T* ¢ =

u(t) =8, for t 2 T*

(p+k - 1)pluo - Goli:g
where T* is bounded above by
xpPx(2 - p)
Moreover if p > 2N or p = 2N (N is odd), lu(t) -~ u .l and  §Vu(t)\ tend
N+ 2 N+ 2 072 p
to zero as t * T*, If 1< p« sz 3 or p= o : 2 (N is even), there exists a number

T"(g T*) such that lvu(c)lp tends to zero as t + T**.
Proof. It is enough to show that the solution w of (NP), tends to zero in Lk"(ﬂ)-

From (3.4) in the proof of lLemma 3.1, we have

R P2
E—%_T g{ f ,wtlk+1dx + X I lwe,k-1(|VUCI2 + e)zdx - eX J |We|k'1(|V"E|2 +¢€) 2 ax .
7=




The second term can be rewritten as

k=1 2(x-1) p

2 2=
2 2
2 oW P )2 et P )
(p+k - 1)

which is bounded below by

p k=1

k € €
—E _—|v(Jw"| P )P
(p+k - 1P

Then, noting 1 < p < 2, we have

k=1 P

A R R el P et Pax < ek [ [wE % Tax
k + 1 dt (p + Xk - 1)p =

By Corollary in Section 2, HSlder's inequality and (3.1), we get

p +k=1 P
1 4 € k+1 kpP K € k+1 k+1 2
v ol B LB R (J 1w lax) <ec (3.10)

(p«fk-")P

where C depends on k, p, ug and 2 but independent of ¢. Let
yie) = [ fwix, )| lax . (3.11)
As € tends to zero in (3.10), we have the differential inequality

y'(t) + c1y(t:)1"S <0 in D'(o,T)

where
o =kt 1PPRK
T (p+x-1P
and

=2-P .
0 < 8§ k+1<‘l

By the comparison argument and the uniqueness of solutions, we conclude that

y(t) » 0 as t + T ,

~8-
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(p +k 1) luo u Ik

0 k+1

™ <
= P,

p kK{(2 - p)
and

y(t) £ 0 for t 2 T* .

By the abstract results of [8], we have
[
th(t)ll2 < T Iw B

for t > 0.

From this, we can estimate IVu(t)lp as follows:
[ |Vu|Pax = | |Vw|Pax = = aiv(]%uw|P 2ve)wax
< 13iv(|Twie) [PT2Ru(e)) 1 twie)s

= lwt(t)lzlw(t)lz

[T

(&
T lwolzlw(t)l2

for t > 0.
Since div(lVW(t)Ip-ZVw(t)) e L‘(ﬂ) for a.e. t € (0,T), the first part of this
calculation make valid.

From Nirenberg-Galiardo inequality (9), we have

a 1-a
Iw(t)lt < CIVu(t)lplw(t)l1

where a satisfies % = (1 - %)a + (1~-a) and r < EEE‘E (the equality holds if N is
P = 8=
odd).
2N 2N 1
—_ = —— i > — - - .
If p> N+ 2 or p =TT (N is odd), we have 12 P (2p N Np) Then we can

take k as 1 and get

1/p
Iw(t)l2 $ c1IVu(t)lp < czlw(t)l2 .

-9-
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2N
1< <
In the other case ( p N+ 2 or

2N i
P=%+ 2 (N is even)], we get only :

P ¢ C cr
Wu(e) 47 < & hwle)l, < o= el .

4. THE EQUATION uy = Au + AMul® T
In this section we will discuss the Neumann problem for the equation '

a=1, (4.1)

up = bu+ Aul
where A > 0 and a2 1.
The equation (4.1) with Neumann zero boundary condition has a solution independent
of x which satisfies the ordinary differential equation '
ap = Mul® N @ o= uen . (4.2)
It is well-known that solutions of (4.2) blow up in finite time when a > 1 and glow
up when a = 1. By the comparison theorem, if there exists a positive number & such ;
that uo(x) 2 § >0 or 0> =6 2 uo(x) for all x e Q (uo(x) is a initial condition},

then the solution of (4.1) with Neumann zero boundary condition and initial condition

ug(x) blow up in finite time when a > 1 and glow up when a = 1.

We are interested in the case that wug(x)_has positive part and negative part in Q. ;
We now give results in the case that a = 1. When a > 1, it is not yet known .
whether the problem (4.1) with Neumann zero boundary condition has extinction phenomena or S
not. }
-
Consider the following problem (a = 1) !
u, = Apu + Au in @ x (0,T)
d_, on 3@ x (0,T) (PP) .
v
u(x,0) = ug(x) in Q
. . . : . k+1 '
Let u(x,t) be a solution of (PP) with initial condition uy € L Q), .

k > max{1, ;‘ (28 - p - Np) ).

Theorem 4.1.

1

Let uy = TﬁT f ug{x)dx. If luo - u0|k+‘ is sufficiently small, then there exists a

number T* > 0 such that




B T —_-— v — v~ - -

k+1

u(t) » Ult) in L*TNQ) as ¢ +T*

u(t) = U(t) for t 2 T*

where ult) = Goeac .

Moreover T* is bounded above by

1
Fxx ](2ZETX

pPkK - A(p + k - 1)Pru - % 2-p

log (

Uolias

proof. Integrating the equation (PP) over £, we have
&/ wixtrax = 2 [ ulx,t)ax
which implies
= At
[ utx,trax = |8ldge t e [0,T) .
We define
wix,t) = u(x,t) - ult) .

Then w(x,t) satisfies

J wix,t)ax = 0

and

Wy = Apv + Aw in @ x (0,T)
%% =0 on 98 x (0,T) (PP) 4

[ -
wi(x,0) = ug(x) = 9y 3 wo(x) in @ . .

Multiplying the equation (PP), by Iwix, 0 1% Y, e)  (x 2 1), integrating over Q and

through the gsame procedure zs Theorem 3.2, we have

+k=1
1 a k+1 ;;kl k+1 k+1 kt+1
— ax + ———ee w dax < A w dx . (4.1) -
PR [ vl PR (J vl ) <x [ vl =

Let y(t) = lw(t)l From (4.1) we have

k+1°

y'(£) + Cuy(t)P Y < ay(t) in D'(O,T)




pPkk
where Cqy = o
(p+k=-1P
By the comparison argument, (4.2) implies

=

(o] C
() ¢ 5t - (5 -y 2Pt 2 B 2P (4.3)
If we take ug as
1 1
< 3 | —
_ - 1327p _ kK 2-p
by - Sl < () (—Rx_ ) (4.4)

AMp +x = P

then
y(t) = Iw(t)lk’1 +0 as t » T*
where
® .
kK (2-p)A
™ £ log ( P, p - 2-p) ?
PkK = A(p + k =~ 1) luo - “0.k+1
Corollary.

1t ug(x)dx = 0, that is, GO = 0 and fugl, .t is sufficiently small, then there

exists a number T* > 0 such that

k+1

u(t) + 0 4in L (3) as t + T*

and
u(t) =0 for t 2 T* .
Remark.
Consider the stationary problem for (PP):
-A = \u in &
pu

(SP)
%% =0 on 3% .

If (SP) has a solution, we have

k=1
P [ 19(lul P u)(Pax = A f [ul*ax .

(p+x -~ NP




P ———

Since ] u{x)dx = 0, we can apply Corollary in Section 2 to obtain

PP ptk-1
.: kK (j lulk*1dx) k+1 iA! l“lk+1dx
" (p+k=-1P
l for k 2 nax(1, %’(2N -p - Np)) which implies
PP 1
)P, (4.5)
(p+x - 1P
- g _1
kK 2-

E Comparing (4.4) with (4.5), we say if lugh ., is larger than (———— )P,

(p+k - 1N
then there exists a solution of (PP) which is independent of t for a special initial

condition ug(x), and this solution does not extinct in finite time whenever
J uplx)ax = 0.
From this point, we conclude that the condition (4.4) for the homogenization (and

extinction) of u is critical.

-13=
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